EECE 412 Group 2

Software CrackingApril 2007)

Ankit Jain, Jason Kuo, Jordan Soet, Brian Tse

Abstract—The goal of this project was to analyze existing
cracking counter measures within readily availablesoftware on
today’'s market. By cracking the software with diferent
techniques we found that most software on today’s anket employ
fairly rudimentary security schemes that are easilyjby passed with
very little know how.

Index Terms—Software Cracking

|l. INTRODUCTION

In today’s world piracy accounts for $35 billion lost

revenues to software companies. Part of this etauy
number is due to the easy crackability as well @®pant
distribution of modern software. Bit torrent andep-2-peer
applications have made the distribution of crackd pirated
software as easy as a few clicks. We set outytdotrcrack
popular licensed software with different techniquesshow
how easy or hard it is to crack software. Everhwimpant
piracy we found that most software applications lengent

security measures that are easily by passed. érgknend that
appears is software from a large company is usoade secure
while smaller start-up companies seem to lack theessary
means to protect their software. To test the pietesoftware
we utilized three different techniques: Hex Readihtpx

Editing, and Debugging. Using these techniquesfaoumd

popular applications that were easily cracked nmEdliate these
problems there are several ways to prevent or &sergecurity,
developers can implement encryption so that kegs raot

visible as plain text. Other techniques includeakting for

debugging software DLLs, if one is found then tpelecation

halts execution. After our experimentation we fiuthat

confidentiality and integrity were not upheld in shof today’s
software. Confidentiality and integrity were bread since a
user could easily read or modify the data. In tajsort we will

investigate the several cracking techniques andesigvays to
prevent or mitigate these problems.

[I. CRACKING TOOLS

To aid us in our cracking we utilized several difet tools that
are widely available online. These tools are tkeyto
successfully cracking a piece of software and sbawe high
learning curves to master.

A. Softice

Softice is a kernel level debugger that is capablealting
all instructions in windows. The most useful agpéSoftice is
its ability to step through code while an exteraaplication
operates. For example Softice can detect the tiheede
where you enter in an invalid registration code amdessage
window informing you of this appears. Knowing this
information is crucial as it allows a cracker tonjuto those
lines of code and augment them in such a way tbtisor skip
the built in security.

B. WDASM32

WDASM32 is a disassembler, which basically takes
machine language and translates it to assemblyés®y much
like how an assembler takes assembly and transtates
machine code. This is extremely important for kinag as it
allows you to view a program’s code line by liriEhis can be
useful since some applications calculate seria$ kethin the
code, and if the algorithm is visible it's possibdaeplicate it to
generate a new serial key.

C. Hiew

Hiew is a hex-editor that allows a user to changevalues
for a given application. Doing so enables a cratkenodify
key lines of code. For example a user may repgoenp
command with a no-op command thus rendering th@jum
useless. This may be useful when an applicatisplals a
warning window telling the user that the serial-leeyered is
invalid. By nullifying this, a user may skip theessage box and
register for an application unhindered.

D. RegMon

RegMon is a system administration tool that lets gbserve
all actions attempted against the windows regiskgr
cracking, this may be useful as a serial key mastbeed in the
registry and realizing that an application is astegthat may
be crucial.

E. FileMon

FileMon is similar to RegMon however instead of efying
the registry, it observes all accessed files. Adhis may be
useful since the application may be accessing itthyos or
serial keys from a separate file.

EECE 412 Group 2

lll. CRACKING EXAMPLES

To gain a greater understanding of software crackive

attempted to crack a number of commercially avéglabftware
products. This experience allowed us to use this toentioned
previously to see firsthand what kind of mechanismst types
of software employ to prevent software crackinghiould also
be noted that although the steps described he@doking the
software are given as if there is a certain alpaorito follow, in

actuality there was a lot of guesswork involvedigare out the
steps necessary to crack the software.

A. Hex Reading

To start out we will give a simple example of usingx
reading to crack software. We will crack the progra
BackupDVD. This technique is quite simple, and lis\cst
trivial, but it still works in some cases and s@sitvorth using it
as an introduction.

1) Sep 1: Examine the security measures
The first step in trying to crack a program is xamine what
kind of protection it uses. Opening BackupDVD we $eat it
gives you the opportunity to register the prograsimg a serial
key. If you enter the wrong serial key, a messamesup saying
“Invalid Serial Key, try again!” (see Fig. 1). Wellnmake a
note of this message, as we will need to rementlbeter.

— S —
Lol
mpgOut. mpg
Al
Olutput
Videc Pleasze Enter the Serial Key here. [f you do not have any
Serial Key then Press Reqister to get the Sernial Key.
Forms " -
If you want : ion then :‘
leave the 5 bkt
A -
H Invalid Serial Key, try again!
‘olume =13ion
Serial Key - |
Input 5 !
) | ° tior |
Yideo QK. Cancel | Begister | d |
, =
Al Language [
Sub Title | None - 3iEE il Englizh -
Buming
Label |BackupD®D Speed |[default] +

Fig. 1. BackupDVD, showing the message box whpops up when an
invalid serial key is entered.

2) Sep 2: Examine the program
After this we can open the folder for BackupDVD.rkleve
may notice that in addition to the BackupDVD.exe@xable
which runs the main program there is also an exbdeitcalled

BackupDVDSK.exe. Running this we find out that g &
separate program responsible just for the seriatégistration.
We can now open up this program in a hex readesaarth for
the message we noted earlier, “Invalid Serial Keyagain!”

Examining the area around this message, we se¢htratis a
string nearby which looks like a possible serigl &ee Fig. 2).
Entering this key into the registration, we sed thaorks and
the program is now registered!

B8 C:ADOCUME-1WJORDAN-1\DesktopHIEW_ 611 HIEW . EXE -|{o ﬂ

BACKUP™2.EXE {FR PE. AB402 70B Hiew 6.11 {c}SEN
.,1|91132 d1l B ShellExecutef B E e B5E &'t
advapild2.dll ? RegClo*eKay d'E x E + DS@
I! =|a1|3 Lo » RegCreateKeyExn 4@ 17 iXSE &Ll u]\l, [CIEEE:T
R RegOpenKeyExA B # + B idSP 848 «chiKP 3430 U
< "RegQuerylalusbxd ae h ipS@ BLtE oh'(@ 3418 U o wm
RegSetUalueExH d'E y(E SE iise G‘Ltﬂ ahé (@ =|a3@] 1 _ RegDe
leteKevn a’'e + [SE i8s@E G‘Ltﬂ oah=(@ 4R » RegDeleteUal
uef (l e e 0 1SE iGSE L@ oh8X@ 3418 U o 2 Reg()pen](e A d'@ poB
+ ySE i3SE 6'tE ghi>@ 418 Y'a JI RegEnumKeyBxA d’@ ff)[a
i%s@ G‘Ltﬂ o(l\ 0 A8 U g n RegEnunUalueH d'e "
1=|SE G'Ltﬂ ah®*@ 3438 U o ? Software>B
pen l\ttp://uuu. "
le E t e

. 1 Kew field Blank. ““H3tf
uhaShToHn..].. FI1RS ERA 3 QF26 -ANW?Z1).
1 -AWNA? -TRES 9 . __ubaExitProe” _ uhalenBst]

1- uhaStx Tolnicode —uhaSetSystenError _ ubaStrCony __vhaOnError
vhaFreelar __ubaUarDup __uhaFreeUarList —_whaFreeStr __vhalarCnpEq
—whalarOr _ uvhaBoolUarNull __vha8trCmp _ _vhaFreeOhjList __vhaFreeStrList|
1 3 5 [7] Pl 5

Fig. 2. The serial key being shown in plain tektew the program is viewed
with a hex editor.

B. Hex Editing

Unfortunately most programs do not use such simgbairity
measures and so more sophisticated techniquegeded. In
this example we will crack the popular file archigiprogram,
WInRAR. It will use similar principles to try andfl the area of
the program where registration takes place.

1) Sep 1. Examine the security measures
Once again the first step is to examine the sgcomiasures.
Similarl to the last program we see that we mugtrea name
and a serial key. Then if we enter the key wromgeasage box
pops up saying “Registration Failed”. Again we wiitown the
message which is in the message box for later.

2) Sep 2: Examine the program

Unfortunately this time the program is not as senpb we
will open it in a disassembler to get a more coneppecture of
what is happening. Once the program is disassenvdedan
search for string references to strings used insidgrogram.
Searching through these it is easy to find the fiom the
message box that we wrote down earlier. By clickimgthis
reference we are brought to the area of code whermessage
box is created (see Fig. 4). Examining around ahés we can
see that there is a compare instruction followed pymp if not
equal instruction just above where the messagseid see Fig.
4). It is very likely that this instruction repregs the serial
number that we entered being compared to an irtgrna
generated serial number and then jumping if iDigect, so we
will make a note of the offset here.

EECE 412 Group 2

ooooooos
dword ptr [ebpt+FFFFFFS4]

t00413CE7 S3C408
:00413C6A SDEDS4FFFFFF
:00413C70 51

:004123C71 28D4ESC
:00413C74 50

:00413C75 EZ4768FFFF
t00413C7A S3C408
:00413C7D S5CO
:00413C7F 7532

add esp,
lea ecx,
push ecx
lea eax,
push eax
call 0040A4C1

add esp-—00000005
test eax, eax
jrne 00413CEZ2

duord ptr [ebp-64]

* Possible Peference to String Resource ID=00048: "Normal"
|
00413C281 6A30 push 00000030
* Possible Peference to String Besource ID=000Z&:
|
push 000000LA
call 0041A18E
pop ecx
push eax

"TMarning"

:00413CE83 GAlh
:00413Cs5 ES01650000
:00413C8A 53
:00413C8E &0

* Possible Reference to

X _Possible Reference to

:00413C2C SAEA
:00413C2E ESF2640000
:00413C93 53
:00413C94 50
:00413C95 FF7508

Dialog: ARCINFODLG, CONTROL_ID:O0EL, ""
|

String Resource ID=00106: "@
L

push 000000EA
call O041A418E
pop ecx
push eax
push [ebp+08]

Fig. 4. The reference to the string and the cormmparand jump prior to the
message.

3) Sep 3: Hex editing
We will now open the program in the hex editor @hdnge
the viewing mode to assembler. We then jump toffeet that
we wrote down and this will bring us to the jumptiaiction that
we were looking at. We want to make it so that jinisp will be
taken no matter what, so we instead replace thp jinot equal
instruction with a jump instruction (see Fig. 5).

[C:\DOCUME -14JORDAN-1\Desktop\HIEW_611\HIEW. EXE
UIHRAR. E

8841 3C3D:
-.BB413C3F:
BB413C41: FF750
99413C44:
.AR413C49: 58
-BB413C4A:
98413C4T:
.B8413C54: E9FL0
-BB413C59:
[98413C5C: 52
.88413C5D: 6830AD4200
-BB413C62: E8399200BHH
.BB413Ch7: 83C488
.B8413C6A: 8DEDS4FFFFFF
-BB413C78: 51

8D459C

58

-8B413C71 =
E84768FFFF

R

{c)SEN
[§%)

-B88413C5
ai

66
d. [ehp][BA00S]
-8804247F2

eax
-BBA4248AC
eax.00AAAGAA1L
-80@413D4E

edx. [ebp1[-80641

edx
Bea42AD3@ ;" BiB"
-B8841 CEAR

esp. @ E =

ecx, Lebp] [BFFFFFF541
ecx

eax,ebpl[-88641
-B8413C74:
-B8413C75:

eax
-BAR48n4C1
-BB413C7A: C4 ok 2598085
-BR41 3

eax.eax
(AR41 3 -B8A413CB3
i 638

BiA

pusin
b

Fig. 5. The test instruction followed by the editenconditional jump.

We then save the changes to the program and exihelk
editor. We now try registering the program agaithvgome
random input and this time we see that it allow$ousegister
(see Fig. 6).

Enter your registration [A4] text

|asdf
Enter your registration code Correct registration
|asdf

0. Eae] Help ! ': Thank you for support:

19102 Application 01-01-97 18:50

7089 Text Docurnent 01-01-97 18:53

Fig. 6. WinRAR showing that we have registereahgsivalid serial keys.

C. Debugging

Unfortunately sometimes string references canndobed in
the program as they are not hard coded in anchatead
accessed through another file, or other methodhisrcase
what you can do is use a debugger such as Saftieet a
breakpoint in the program on a Windows API call ethyou
can guess will be used in the program. Some exanpdtude
the calls messageboxa, readfile, writefile, regedasya and
many others. Once you have found a call which ésl@d the
breakpoint happens, you can find the area of cdumenit is
called and similarly to hex editing, find a possibbmpare and
jump instruction and edit it so that it thinks yleave correctly
entered the key. In this example we will crackplogular
internet chat client, mIRC.

1) Sep 1: Examine the security measures

Once again, similar to the last two examples, vwamére the
program to see what kind of security measuresdoglAgain, it
uses a name and serial key and we make a note ofie¢ksage
which pops up when we enter the incorrect key. tofately,
when we examine the program this time we find bat twe
can't access the string references so we are faiwadse a
debugger instead.

2) Sep 2: Setting breakpoints using the debugger

Using the Softice debugger we set a debugger on the

messageboxa API call, since a message box is pajpley the
program when you enter the wrong serial key. Orue t
breakpoint is set using the command “bpx messageébar
again enter an incorrect serial key and just befloeemessage
box pops up the Softice debugger appears sincesthisere we
set our breakpoint. When the debugger pops up essgf10 to
step out of the actual WindowsAPI call and bacthtoprogram
code. Once here we make note of the line numbemnthare at
and then erase the breakpoint and then erasedhkgmint and
close the debugger.

3) Sep 3: Examine the program

Once we know where to look we can open the progrnam
disassembler to examine it in more detail. Exangrtlre area
around where the message box is created we sedt tizat
referenced by a jump at a previous point in thg@m (see Fig.
7). Going to this point we see that again thera ¢®@mparison
followed by a jump if equal. Once again we makete rof the
offset here.

EECE 412 Group 2

* Reference To: TSER3IZ. MessageBoxd, Ord: 0000k
|

Call 0O04DESCE

mov eax, 00000001
jmp 00439634

:0043956E ESSEC40900
:00439570 ES01000000
00439575 ESCO000000

eferenced by a (Uinconditional or (Clonditional Jump at AddressT
:004334D3 (C)

S0043957A gAO0

PUSH OOO0O000

* Reference To: UTSER3IZ.MessageBeep, Ord:0000k

|

Call 0O04DESEC
push 004D94E7
push 00000000
push 0000000C

:0043957C ES3EC40900
00439581 &827944D00
00439586 EAODD
00439588 EAOC

* Possible Ref to Menu: MenuIl 0017, Ttem: "Search..."
|

Fig. 6. The jump from a previous point in the peog.

4) Step 4: Hex editing

Opening the program in a hex editor we can goeooffset we
found. This time we want to make sure that the juspot
taken, so we will replace the jump with a seriesmbperations.
We need to make sure that the rest of the instmstare not
altered though, and so since the jump if equatucsbn is 6
bytes long including its arguments and the no dmmra
instruction is only one byte, we need to replacwith 6 no
operations (see Fig. 8).

B8 C:\Jordan\SchooAEECE41 ~2\PRESEN-1\HIEW_611\HIEW.EXE

MIRC32 .
-8B4394C3 :
-BB4394C8 =
-8B4394CD:
-884394D2 -
-884394D7-
-BB4354D9 =
~AB4394DA =
-884394DB:
-884394DC:
-8R4394DD:
-BB4324DE:
-BB4394DF =&
-BB4394E4:
-BB4394E9 -
-BB4394EE:
-BB4394F3:
-BB4394F8 -
-BB4394FD:
-8B439502: 33C8
-8B4395084
-8B439507:
-8B439509 :
-AB439506B:
1 2FilBlk 3

REE

Hiew 6.11 <c)SEN

—————— 2

-8l
esi,.BBB4F64CC
di.@BP4ESHES 3

Fig. 7. The edited program with the jump if eguatruction replaced by 6 no
operations.

D. Software design principlesignored

Obviously with these examples there were numeresgd
principles ignored but the main ones ignored wiee t
following:

= Open Design: This is mainly for BackupDVD. There
was the assumption made that the internal codedwvoul
not be visible to the users of the program andtso i
would be ok to hardcode the serial key. If the giesi
was open this assumption wouldn’t have been made.
This is also applicable to the others though, siheg
weren't designed openly and so they do all pagly r
on security through obscurity.

= Defense in Depth: In all these examples there ig on
one software check done to check that the user has
registered.

= Question Assumptions: Again, with BackupDVD it
should not have been assumed that users wouldnot b
able to access the internal workings of the program

= Complete Mediation: All the programs should chédck i
the user is registered every time a feature is,used

whereas instead it is just checked once and tflag a
is set to say that it is registered.

= Separation of Privilege: In each of the programly on
one condition is used to check the privilege of the
user, instead of using multiple conditions.

IV. COUNTERMEASURE$PREVENTION

Having analyzed the different ways one could getuad
CD-key or even generate it to illegally access aceiof
software, we should now try to define some countasares
that can help software developers safeguard tlegrity and
confidentiality of software.

A. Encryption

Once this is done we can run the program and sae th Giving the example of cracking a single master #et is

registration works fine now (see Fig. 9).
g

W E @O BB 888
EStatus
a

= mIRC Registration!

\.‘i‘:) ‘four registration has been entered successfully,

Thanks for registering! 13

Fig. 8. The mIRC registration showing that we hpweperly registered after
entering an invalid serial key

hardcoded into the program, it is observed thanaptex hiding
mechanism must be used, namely, encryption. Erioryfitas
become the most common security measure in theabhgbrid.
Almost all communications involves some sort of rgption
algorithms. Thus, by integrating encryption in tbedes to
encrypt the serial keys, messages, or functiongwdoel
searching or hex viewing cracking methods will bbeeomore
difficult to crackers. Online sources suggested thaimple
XOR adds 5 minutes to cracking time, while more aabed
RSA/SHA encryption standard can add hours.

B. Detection

When a debugger is used, it will create a processing in
the background of an OS. Debugger like Softiceardniver file
called NTICE.dIl while continuously monitor the OSne way
to detect such file in the kernel is to creatertusl file with the
same name. Using Application Programming Interf@&il)
function “CreateFileA”, we can detect whether NTIGIE is

EECE 412 Group 2

running. Then the developers and program in swedyeto have
the software terminates itself when debuggers atected.

An example of such usage is documented below:

HANDLE hFile = CreateFile("\W.\NTICE",
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

if(hFile!=INVALID_HANDLE_VALUE)
{ /I Softice Detected
CloseHandle(hFile); }

C. Sdection

Selection means that software developers must ehtes
proper programming tools and security software thes
available out there to decide how much security theed. For
example, different sources have indicated thataliBasic and
Dephium are two languages that are much hardenattk ¢han
others, simply because their run time .dll fileg &arder to
decipher, making isolation of software protecticorendifficult.

Furthermore, there are numerous software released the
market for the benefit of software developer sy tben avoid
having to develop security algorithms on their o@ne risk of
using these public known software is that they migk
malicious themselves. One of the concerns is the afs

implement a fake serial that is relative easyrd fnd work for
registration at the same time. Every time this fadé®al is used
in registration, the program removes some of thlevirsion
functions.
2) Onlinelicense

Localized software is vulnerable to attack becdheausers
have all the world’s time to attempt cracking. @ali
registration and license files synchronization @lees such
problem by requiring users to obtain serial key kcehse file
every time the software is used. In this case kenacare
isolated. Online server hacking becomes the prirtfapat.

V. COUNTER-GUNTERMEASURES

The truth about the software world is that cracleeesalways
one step ahead of software developers. No matteat wh
protection scheme is used, crackers can alwaysdfimgy to
snoop out the registration weakness, and countgr an
pre-cautions developers take.

For example, in the case of debugger detection,enew
debugger versions have included a sort of polymduphbtion
to change its running driver name. Whenever theuggér is
required to run, the file NTICE.dIl will be appentiaith the
debugger serials.

NTICE.dIl = NTICE1234.dll
Because of this method, the detection scheme wailld

VI. TOO MUCH SECURITY.

backdoor. The protection software might have unkmow

functionalities that serve the purpose of snoopigrserials
and encryption algorithms. Another concern is tihe
protection software might already be cracked itsgKing it

means leaving your own software vulnerable to aexk

everywhere.

Therefore, depending on how much security is neetted
developer must choose the appropriate programraimguiage
and protection software through research.

D. Experimentation

Although cracking skills and experiences are nahmon
amongst developers, one of the best defensive mischsiis to
identify the weakness of your own protection schémérying
to crack your own software.

There are web crackers who offer help to improweeqation
scheme, for those who would like to gain an undeding how
much a piece of software can resist attack. Praperof such
service and attempting to break your own code niighthe best
option out there to improve

E. Other protection scheme
1) Fakeserials
Sometimes when the first set of serial is foundckers will
stop at that point. Because of this human natune, aould

Now we discuss some examples of software thatesiged
to provide security but rather end up serving sother
purpose.

For example, Starforce is very famous anti-crackiofware
that many gaming companies used to provide seduoity
hacking their games. Now this software comes advard
hidden in the game and it installs itself as a ulised
programming running on a PC. It does provide sgcagainst
hacking, but it also slows down the computer t@@neme
extent, blocks the CD/DVD ROM from operating andyrpptly
keeps on restarting the computer again and aghis.sbftware
is boycott on many online blogs and considered @svare on
the Internet.

VII. SOFTWARE GUARDS:

Now we discuss the software guards approach taesecu
network. Most of the software based mechanismsdtept
software are either too weak i.e. they have a singtde of
failure, or they are too expensive i.e. they inoeavy run time
penalties on performance. A simple approach tognethis is
to use a distributed approach to protect softwarthis
mechanism, tamper resistance of program code is\ashnot
by a single security model but by a network of sigguinits.

EECE 412 Group 2

This approach is followed by using software guavdsere a
chain of small guards or security units programmoedb certain
tasks work together to enforce security by reirifayprotection
for each other by creating mutual-protection. Thgs&rds can
be programmed as Win32 executables and start exgciihis
network of guards is harder to defeat becausgitgcs shared
among all the guards, and each of them is poténtjahrded by
other guards. The guarding framework could beibisted as
follows:

e Guards: protection is pro vided by a network of
execution units embedded within a program. Each
guard is a piece of code responsible for performing
certain security-related actions during program

implement multiple checks in your system. An evetidy
method is to use distributed checks, as this waytue is not
running on a local machine, making it much morédift to
crack. Another method to deter crackers is to ofevare
aging. This is when you continually update youtwsafe by
adding new features, thus making it less and Iss&ilto
someone who hasn't properly registered.

So finally, in conclusion, looking back we saw thaftware
cracking is a very important issue, partly becaunaay
programs only use very rudimentary protection. Havewe
also saw that basically, any software protecti@t thlies only
on local measures can be cracked. So what we fargitle is a
trade-off between putting enough security in odtveare to

execution like. Examples of some of the prograrkgas provide a deterrent against most people while oxgetting
that guards can do are: Checksum code, Repair codabout the usability and features of the softwaag we're trying

etc.

» Guard network: A group of guards working together

to write.

can provide a more sophisticated security mechanism

than that provided by a single guard. For exampée,

program has multiple pieces of code whose integrity

needs to be protected, then it can deploy multiple

REFERENCES

: . . [1] Pavol CervenCrackproof Your Software: Protect Your Software
CheCk summing guards for protecting the different Against Crackers”. Berkley: Publishers Group Wa602.
. gleegjrslt . [2] Crackz, “Anti-Debugging & Software Protection_Advice”. [Oné]
Y- L . . . Available: http://www.woodmann.convcrackz/ Tutorial /Protect.htm
v DlsmbUted.n?SS‘ There is no smgle point of [3] H.Chang, M.J. Atallah, “Protecting softwaxaes by guards”, CERIAS,
entry or exit into or out of the network Purude University and Arxan Technologies, 2001
because its individual components are
invoked at different points at runtime [4] Boycott Staforce, Glop.org, 2005, http://wwlaj.org/starforce/
Y Mu|t|p||C|ty: M“'“P'e guards can be_u,SEd to [5] JA Whittaker, HH Thompson “How to Break SoftweSecurity” Addison
secure a single piece of code providing Wesley, 2003
variety of security mechanisms to ensure
better security [6] Ma_rkus Jakobsson, _Michael K. Reiter “DiscourqyiSof_tware Piracy
v Dynamism: There are many different ways by Using Software Aging”, CERIAS, Purude University darArxan

which security guards can be programmed.

Technologies, 2001

For example, a group of security guards can
emphasis 1/O aspect of security while another

group can focus on malware and so forth

VIII.

As we've gone through these examples it probalggnsehat
every security mechanism implemented is later bsg@dsSo
what options are we left with, should we not ruousiy checks
on the machine? Basically the answer is yes, otleeof
problems with software on our current systemsas iths
inherently transparent to the user. And given itifisrmation
about the actions a program is performing as veetfreough
time and motivation any security mechanisms widrually be
cracked. So what are we supposed to do to sols@ Wiell, we
could run our software only on protected systemghvhide
this information from the user, but this isn't heal viable
solution because we want to be able to run onytbiems that
our clients are using.

CONCLUSION

So what can be done then? Well, one of the masorea
most software security systems fail is becausesiigle point
of failure, and one of the best ways of guardinairst this is to

