
EECE 412 Group 2

1

Abstract—The goal of this project was to analyze existing

cracking counter measures within readily available software on
today’s market. By cracking the software with different
techniques we found that most software on today’s market employ
fairly rudimentary security schemes that are easily by passed with
very little know how.

Index Terms—Software Cracking

I. INTRODUCTION

n today’s world piracy accounts for $35 billion in lost
revenues to software companies. Part of this staggering

number is due to the easy crackability as well as rampant
distribution of modern software. Bit torrent and peer-2-peer
applications have made the distribution of cracks and pirated
software as easy as a few clicks. We set out to try to crack
popular licensed software with different techniques to show
how easy or hard it is to crack software. Even with rampant
piracy we found that most software applications implement
security measures that are easily by passed. A general trend that
appears is software from a large company is usually more secure
while smaller start-up companies seem to lack the necessary
means to protect their software. To test the pieces of software
we utilized three different techniques: Hex Reading, Hex
Editing, and Debugging. Using these techniques we found
popular applications that were easily cracked. To mediate these
problems there are several ways to prevent or increase security,
developers can implement encryption so that keys are not
visible as plain text. Other techniques include checking for
debugging software DLLs, if one is found then the application
halts execution. After our experimentation we found that
confidentiality and integrity were not upheld in most of today’s
software. Confidentiality and integrity were breached since a
user could easily read or modify the data. In this report we will
investigate the several cracking techniques and suggest ways to
prevent or mitigate these problems.

II. CRACKING TOOLS

To aid us in our cracking we utilized several different tools that
are widely available online. These tools are they key to
successfully cracking a piece of software and some have high
learning curves to master.

A. Softice

Softice is a kernel level debugger that is capable of halting
all instructions in windows. The most useful aspect of Softice is
its ability to step through code while an external application
operates. For example Softice can detect the lines of code
where you enter in an invalid registration code and a message
window informing you of this appears. Knowing this
information is crucial as it allows a cracker to jump to those
lines of code and augment them in such a way to disable or skip
the built in security.

B. WDASM32

WDASM32 is a disassembler, which basically takes
machine language and translates it to assembly language, much
like how an assembler takes assembly and translates it to
machine code. This is extremely important for cracking as it
allows you to view a program’s code line by line. This can be
useful since some applications calculate serial keys within the
code, and if the algorithm is visible it’s possible to replicate it to
generate a new serial key.

C. Hiew

Hiew is a hex-editor that allows a user to change hex values
for a given application. Doing so enables a cracker to modify
key lines of code. For example a user may replace a jump
command with a no-op command thus rendering the jump
useless. This may be useful when an application displays a
warning window telling the user that the serial-key entered is
invalid. By nullifying this, a user may skip the message box and
register for an application unhindered.

D. RegMon

RegMon is a system administration tool that lets you observe
all actions attempted against the windows registry. For
cracking, this may be useful as a serial key may be stored in the
registry and realizing that an application is accessing that may
be crucial.

E. FileMon

FileMon is similar to RegMon however instead of observing
the registry, it observes all accessed files. Again this may be
useful since the application may be accessing algorithms or
serial keys from a separate file.

Software Cracking (April 2007)

Ankit Jain, Jason Kuo, Jordan Soet, Brian Tse

I

EECE 412 Group 2

2

III. CRACKING EXAMPLES

To gain a greater understanding of software cracking we
attempted to crack a number of commercially available software
products. This experience allowed us to use the tools mentioned
previously to see firsthand what kind of mechanisms most types
of software employ to prevent software cracking. It should also
be noted that although the steps described here for cracking the
software are given as if there is a certain algorithm to follow, in
actuality there was a lot of guesswork involved to figure out the
steps necessary to crack the software.

A. Hex Reading

To start out we will give a simple example of using hex
reading to crack software. We will crack the program
BackupDVD. This technique is quite simple, and is almost
trivial, but it still works in some cases and so it is worth using it
as an introduction.

1) Step 1: Examine the security measures
The first step in trying to crack a program is to examine what

kind of protection it uses. Opening BackupDVD we see that it
gives you the opportunity to register the program using a serial
key. If you enter the wrong serial key, a message pops up saying
“Invalid Serial Key, try again!” (see Fig. 1). We will make a
note of this message, as we will need to remember it later.

Fig. 1. BackupDVD, showing the message box which pops up when an
invalid serial key is entered.

2) Step 2: Examine the program

After this we can open the folder for BackupDVD. Here we
may notice that in addition to the BackupDVD.exe executable
which runs the main program there is also an executable called

BackupDVDSK.exe. Running this we find out that it is a
separate program responsible just for the serial key registration.
We can now open up this program in a hex reader and search for
the message we noted earlier, “Invalid Serial Key, try again!”
Examining the area around this message, we see that there is a
string nearby which looks like a possible serial key (see Fig. 2).
Entering this key into the registration, we see that it works and
the program is now registered!

Fig. 2. The serial key being shown in plain text when the program is viewed
with a hex editor.

B. Hex Editing

Unfortunately most programs do not use such simple security
measures and so more sophisticated techniques are needed. In
this example we will crack the popular file archiving program,
WinRAR. It will use similar principles to try and find the area of
the program where registration takes place.

1) Step 1: Examine the security measures
Once again the first step is to examine the security measures.

Similarl to the last program we see that we must enter a name
and a serial key. Then if we enter the key wrong a message box
pops up saying “Registration Failed”. Again we write down the
message which is in the message box for later.

2) Step 2: Examine the program

Unfortunately this time the program is not as simple so we
will open it in a disassembler to get a more complete picture of
what is happening. Once the program is disassembled we can
search for string references to strings used inside the program.
Searching through these it is easy to find the one from the
message box that we wrote down earlier. By clicking on this
reference we are brought to the area of code where the message
box is created (see Fig. 4). Examining around this area we can
see that there is a compare instruction followed by a jump if not
equal instruction just above where the message is used (see Fig.
4). It is very likely that this instruction represents the serial
number that we entered being compared to an internally
generated serial number and then jumping if it is correct, so we
will make a note of the offset here.

EECE 412 Group 2

3

Fig. 4. The reference to the string and the comparison and jump prior to the
message.

3) Step 3: Hex editing

We will now open the program in the hex editor and change
the viewing mode to assembler. We then jump to the offset that
we wrote down and this will bring us to the jump instruction that
we were looking at. We want to make it so that this jump will be
taken no matter what, so we instead replace the jump if not equal
instruction with a jump instruction (see Fig. 5).

Fig. 5. The test instruction followed by the edited unconditional jump.

We then save the changes to the program and exit the hex

editor. We now try registering the program again with some
random input and this time we see that it allows us to register
(see Fig. 6).

Fig. 6. WinRAR showing that we have registered using invalid serial keys.

C. Debugging

Unfortunately sometimes string references cannot be found in
the program as they are not hard coded in and are instead
accessed through another file, or other methods. In this case
what you can do is use a debugger such as Softice to set a
breakpoint in the program on a Windows API call which you
can guess will be used in the program. Some examples include
the calls messageboxa, readfile, writefile, regcreatekeya and
many others. Once you have found a call which is used and the
breakpoint happens, you can find the area of code where it is
called and similarly to hex editing, find a possible compare and
jump instruction and edit it so that it thinks you have correctly
entered the key. In this example we will crack the popular
internet chat client, mIRC.

1) Step 1: Examine the security measures

Once again, similar to the last two examples, we examine the
program to see what kind of security measures in place. Again, it
uses a name and serial key and we make a note of the message
which pops up when we enter the incorrect key. Unfortunately,
when we examine the program this time we find out that we
can’t access the string references so we are forced to use a
debugger instead.

2) Step 2: Setting breakpoints using the debugger

Using the Softice debugger we set a debugger on the
messageboxa API call, since a message box is popped up by the
program when you enter the wrong serial key. Once the
breakpoint is set using the command “bpx messageboxa” we
again enter an incorrect serial key and just before the message
box pops up the Softice debugger appears since this is where we
set our breakpoint. When the debugger pops up we press F10 to
step out of the actual WindowsAPI call and back to the program
code. Once here we make note of the line number that we are at
and then erase the breakpoint and then erase the breakpoint and
close the debugger.

3) Step 3: Examine the program

Once we know where to look we can open the program in a
disassembler to examine it in more detail. Examining the area
around where the message box is created we see that it is
referenced by a jump at a previous point in the program (see Fig.
7). Going to this point we see that again there is a comparison
followed by a jump if equal. Once again we make a note of the
offset here.

EECE 412 Group 2

4

Fig. 6. The jump from a previous point in the program.

4) Step 4: Hex editing

Opening the program in a hex editor we can go to the offset we
found. This time we want to make sure that the jump is not
taken, so we will replace the jump with a series of no operations.
We need to make sure that the rest of the instructions are not
altered though, and so since the jump if equal instruction is 6
bytes long including its arguments and the no operation
instruction is only one byte, we need to replace it with 6 no
operations (see Fig. 8).

Fig. 7. The edited program with the jump if equal instruction replaced by 6 no
operations.

Once this is done we can run the program and see that
registration works fine now (see Fig. 9).

Fig. 8. The mIRC registration showing that we have properly registered after
entering an invalid serial key

D. Software design principles ignored

Obviously with these examples there were numerous design
principles ignored but the main ones ignored were the
following:

� Open Design: This is mainly for BackupDVD. There
was the assumption made that the internal code would
not be visible to the users of the program and so it
would be ok to hardcode the serial key. If the design
was open this assumption wouldn’t have been made.
This is also applicable to the others though, since they
weren’t designed openly and so they do all partly rely
on security through obscurity.

� Defense in Depth: In all these examples there is only
one software check done to check that the user has
registered.

� Question Assumptions: Again, with BackupDVD it
should not have been assumed that users would not be
able to access the internal workings of the program.

� Complete Mediation: All the programs should check if
the user is registered every time a feature is used,
whereas instead it is just checked once and then a flag
is set to say that it is registered.

� Separation of Privilege: In each of the programs only
one condition is used to check the privilege of the
user, instead of using multiple conditions.

IV. COUNTERMEASURES/PREVENTION

Having analyzed the different ways one could get around
CD-key or even generate it to illegally access a piece of
software, we should now try to define some countermeasures
that can help software developers safeguard the integrity and
confidentiality of software.

A. Encryption

Giving the example of cracking a single master key that is
hardcoded into the program, it is observed that a complex hiding
mechanism must be used, namely, encryption. Encryption has
become the most common security measure in the digital world.
Almost all communications involves some sort of encryption
algorithms. Thus, by integrating encryption in the codes to
encrypt the serial keys, messages, or functions, keyword
searching or hex viewing cracking methods will become more
difficult to crackers. Online sources suggested that a simple
XOR adds 5 minutes to cracking time, while more advanced
RSA/SHA encryption standard can add hours.

B. Detection

When a debugger is used, it will create a process running in
the background of an OS. Debugger like Softice run a driver file
called NTICE.dll while continuously monitor the OS. One way
to detect such file in the kernel is to create a virtual file with the
same name. Using Application Programming Interface (API)
function “CreateFileA”, we can detect whether NTICE.dll is

EECE 412 Group 2

5

running. Then the developers and program in such a way to have
the software terminates itself when debuggers are detected.

An example of such usage is documented below:

HANDLE hFile = CreateFile("\\\\.\\NTICE",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL);

if(hFile!=INVALID_HANDLE_VALUE)
{ // Softice Detected
CloseHandle(hFile); }

C. Selection

Selection means that software developers must choose the
proper programming tools and security software that are
available out there to decide how much security they need. For
example, different sources have indicated that Visual Basic and
Dephium are two languages that are much harder to crack than
others, simply because their run time .dll files are harder to
decipher, making isolation of software protection more difficult.

Furthermore, there are numerous software released out in the
market for the benefit of software developer so they can avoid
having to develop security algorithms on their own. One risk of
using these public known software is that they might be
malicious themselves. One of the concerns is the use of
backdoor. The protection software might have unknown
functionalities that serve the purpose of snooping CD-serials
and encryption algorithms. Another concern is that the
protection software might already be cracked itself. Using it
means leaving your own software vulnerable to crackers
everywhere.

Therefore, depending on how much security is needed, the
developer must choose the appropriate programming language
and protection software through research.

D. Experimentation

Although cracking skills and experiences are not common
amongst developers, one of the best defensive mechanisms is to
identify the weakness of your own protection scheme by trying
to crack your own software.

There are web crackers who offer help to improve protection
scheme, for those who would like to gain an understanding how
much a piece of software can resist attack. Proper use of such
service and attempting to break your own code might be the best
option out there to improve

E. Other protection scheme

1) Fake serials
Sometimes when the first set of serial is found, crackers will

stop at that point. Because of this human nature, one could

implement a fake serial that is relative easy to find and work for
registration at the same time. Every time this fake serial is used
in registration, the program removes some of the full version
functions.

2) Online license
Localized software is vulnerable to attack because the users

have all the world’s time to attempt cracking. Online
registration and license files synchronization eliminates such
problem by requiring users to obtain serial key and license file
every time the software is used. In this case, crackers are
isolated. Online server hacking becomes the primary threat.

V. COUNTER-COUNTERMEASURES

The truth about the software world is that crackers are always
one step ahead of software developers. No matter what
protection scheme is used, crackers can always find a way to
snoop out the registration weakness, and counter any
pre-cautions developers take.

For example, in the case of debugger detection, newer
debugger versions have included a sort of polymorph function
to change its running driver name. Whenever the debugger is
required to run, the file NTICE.dll will be appended with the
debugger serials.

NTICE.dll � NTICE1234.dll
Because of this method, the detection scheme would fail.

VI. TOO MUCH SECURITY:

Now we discuss some examples of software that are designed

to provide security but rather end up serving some other
purpose.

For example, Starforce is very famous anti-cracking software
that many gaming companies used to provide security from
hacking their games. Now this software comes as a driver
hidden in the game and it installs itself as a disguised
programming running on a PC. It does provide security against
hacking, but it also slows down the computer to an extreme
extent, blocks the CD/DVD ROM from operating and, promptly
keeps on restarting the computer again and again. This software
is boycott on many online blogs and considered as malware on
the Internet.

VII. SOFTWARE GUARDS:

Now we discuss the software guards approach to secure a

network. Most of the software based mechanisms to protect
software are either too weak i.e. they have a single node of
failure, or they are too expensive i.e. they incur heavy run time
penalties on performance. A simple approach to prevent this is
to use a distributed approach to protect software. In this
mechanism, tamper resistance of program code is achieved not
by a single security model but by a network of security units.

EECE 412 Group 2

6

This approach is followed by using software guards, where a
chain of small guards or security units programmed to do certain
tasks work together to enforce security by reinforcing protection
for each other by creating mutual-protection. These guards can
be programmed as Win32 executables and start executing. This
network of guards is harder to defeat because security is shared
among all the guards, and each of them is potentially guarded by
other guards. The guarding framework could be distributed as
follows:

• Guards: protection is pro vided by a network of
execution units embedded within a program. Each
guard is a piece of code responsible for performing
certain security-related actions during program
execution like. Examples of some of the program tasks
that guards can do are: Checksum code, Repair code
etc.

• Guard network: A group of guards working together
can provide a more sophisticated security mechanism
than that provided by a single guard. For example, if a
program has multiple pieces of code whose integrity
needs to be protected, then it can deploy multiple
check summing guards for protecting the different
pieces.

• Security:
� Distributedness: There is no single point of

entry or exit into or out of the network
because its individual components are
invoked at different points at runtime

� Multiplicity: Multiple guards can be used to
secure a single piece of code providing
variety of security mechanisms to ensure
better security

� Dynamism: There are many different ways by
which security guards can be programmed.
For example, a group of security guards can
emphasis I/O aspect of security while another
group can focus on malware and so forth

VIII. CONCLUSION

As we've gone through these examples it probably seems that
every security mechanism implemented is later bypassed. So
what options are we left with, should we not run security checks
on the machine? Basically the answer is yes, one of the
problems with software on our current systems is that it is
inherently transparent to the user. And given this information
about the actions a program is performing as well as enough
time and motivation any security mechanisms will eventually be
cracked. So what are we supposed to do to solve this? Well, we
could run our software only on protected systems which hide
this information from the user, but this isn't really a viable
solution because we want to be able to run on the systems that
our clients are using.

So what can be done then? Well, one of the main reasons
most software security systems fail is because of a single point
of failure, and one of the best ways of guarding against this is to

implement multiple checks in your system. An even better
method is to use distributed checks, as this way the code is not
running on a local machine, making it much more difficult to
crack. Another method to deter crackers is to use software
aging. This is when you continually update your software by
adding new features, thus making it less and less useful to
someone who hasn't properly registered.

So finally, in conclusion, looking back we saw that software
cracking is a very important issue, partly because many
programs only use very rudimentary protection. However, we
also saw that basically, any software protection that relies only
on local measures can be cracked. So what we are left with is a
trade-off between putting enough security in our software to
provide a deterrent against most people while not forgetting
about the usability and features of the software that we're trying
to write.

REFERENCES

[1] Pavol Cerven, “Crackproof Your Software: Protect Your Software
Against Crackers”. Berkley: Publishers Group West, 2002.

[2] CrackZ, “Anti-Debugging & Software Protection Advice”. [Online]
Available: http://www.woodmann.com/crackz/Tutorials/Protect.htm

[3] H. Chang, M.J. Atallah, “Protecting software codes by guards” , CERIAS,
Purude University and Arxan Technologies, 2001

[4] Boycott Staforce, Glop.org, 2005, http://www.glop.org/starforce/

[5] JA Whittaker, HH Thompson “How to Break Software Security” Addison

Wesley, 2003

[6] Markus Jakobsson, Michael K. Reiter “Discouraging Software Piracy

Using Software Aging”, CERIAS, Purude University and Arxan
Technologies, 2001

